翻訳と辞書 |
Power estimation techniques for RTL : ウィキペディア英語版 | Power estimation techniques for RTL
== Introduction == The most accurate power analysis tools are available for the circuit level but unfortunately, even with switch- rather than device-level modelling, tools at the circuit level have disadvantages like they are either too slow or require too much memory thus inhibiting large chip handling. The majority of these are simulators like SPICE and have been used by the designers for many years as performance analysis tools. Due to these disadvantages, gate-level power estimation tools have begun to gain some acceptance where faster, probabilistic techniques have begun to gain a foothold. But it also has its trade off as speedup is achieved on the cost of accuracy, especially in the presence of correlated signals. Over the years it has been realized that biggest wins in low power design cannot come from circuit- and gate-level optimizations whereas architecture, system, and algorithm optimizations tend to have the largest impact on power consumption. Therefore, there has been a shift in the incline of the tool developers towards high-level analysis and optimization tools for power.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Power estimation techniques for RTL」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|